Review on Image Guided Surgery Systems

akram omara omara, omer mohamed gaddoura, megdy altayb altayb

Abstract


Nowadays modern imaging techniques can grant an excellent quality 3D images that clearly show the anatomy, vascularity, pathology and active functions of the tissues. The ability to register these preoperative images to each other, to offer a comprehensive information, and later the ability to register the image space to the patient space intraoperatively is the core for the image guided surgery systems (IGS). Other main elements of the system include the process of tracking the surgical tools intraoperatively by reflecting their positions within the 3D image model. In some occasions an intraoperative image may be acquired and registered to the preoperative images to make sure the 3D model used to guide the operation describes the actual situation at surgery time. This survey overviews the history of IGS and discusses the modern system components for a reliable application and gives information about the different applications in medical specialties that benefited from the use of IGS.

Keywords


Image-guided surgery; Anatomical landmarks; Skin markers; bone mounted markers, Point matching registration; Space registration; tracking system

Full Text:

Untitled

References


¬¬¬

REFERENCES

Linte CA, Yaniv ZR (2016) Image-guided interventions: we’ve come a long way, but are we there? IEEE Pulse 7(6): pp. 46-50

Paleologos TS, Wadley JP, Kitchen ND, Thomas DG. (2000). Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image- guided meningioma surgery. Neurosurgery 47: pp. 40–47.

http://www.smart-heart-living.com. Accessed on: 13/12/2019.

http://www.bigappleheartsurgery.com. Accessed on: 13/12/2019.

Dam H J W. (1896). The new marvel in photography McLure’s Mag. 6 403.

http://commons.wikimedia.org/wiki/File:First_medical_Xray_by_Wilhelm_R%C3%B6ntgen_of_his_wife_Anna_Bertha_Ludwig%27s_hand_18951222.jpg. Accessed on: 13/12/2019.

Horsley V and Clarke R H. (1908). The structure and function of the cerebellum examined by a new method Brain 31: pp. 45–124.

Olivier A, Bertrand G and Picard C. (1983). Discovery of the first human stereotaxic instrument Appl. Neurophysiol. 4(6): pp. 84–91.

Spiegel E A, Wycis H T, Marks M and Lee A S. (1947). Stereotaxic apparatus for operation of the human brain Science 106 (3): pp. 49–50.

Brown R A. (1979). A computerized tomography-computer graphics approach to stereotaxic localization J. Neurosurg. 50(7): pp.15–20.

Gildenberg P L. (1998). The history of stereotactic and functional neurosurgery Textbook of Functional and Stereotactic Neurosurgery ed P L Gildenberg and R Tasker (New York: McGraw-Hill).

Malcolm F PELL, Thomas D, Cosman E. (1994). Development and technical features of the Cosman-Roberts-Wells (CRW) stereotactic system. In: Pell MF, Thomas DGT, eds: Handbook of Stereotaxy using the CRW Apparatus. Baltimore: Williams & Wilkins 1994: pp.1–52.

Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H. (1986). A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 6(5): pp. 545–549.

Carlos F D, Josefina C, (2019). Image-Guided Surgery: A Combined Evolution of Surgery and Imaging Methods. Nov Res Sci.1(2). NRS.000506.

Waheeda Sureshbabu and Osama Mawlawi. (2005). PET/CT imaging artifacts. J. Nucl. Med. Technol., 33(3): pp.156-161.

Deming Wang, Wendy Strugnell, Gary Cowin, David M. Doddrell, and Richard Slaughter. (2004). Geometric distortion in clinical MRI systems part I: evaluation using a 3D phantom. Magn. Reson. Imaging, 22(9): pp.1211- 1221.

Ferenc A. Jolesz. (2005). Future perspectives for intraoperative MRI. Neurosurgical Clinics of North America, 16(1): pp. 201-213.

Schulder M, Sernas T J and Carmel P W. (2003). Cranial surgery and navigation with a compact intraoperative MRI system Acta Neurochirurg. Suppl. 8 (5): pp. 79–86.

S. Wirth et al. (2001). C-arm based computed tomography - a comparative study. In Computer Assisted Radiology and Surgery, pp. 408-413.

M. Grass, R. Koppe, E. Klotz, R. Proksa, M. H. Kuhn, H. Aerts, J. Op de Beek, and R. Kemkers. (1999). Three-dimensional reconstruction of high contrast objects using C-arm image intensi¯er projection data. Comput. Med. Imaging Graph., 23(6): pp.311-321.

Andrew H. Gee, Richard W. Prager, Graham M. Treece, and Laurence H. Berman. (2003). Engineering a freehand 3D ultrasound system. Pattern Recognition Letters, 24(4- 5): pp.757-777.

Aaron Fenster and Donal B. Downey. (2000). Three dimensional ultrasound imaging. Annual Review of Biomedical Engineering, 2(1): pp.457-475.

Gleason P L, Kikinis R, Altobelli D, Wells W, Alexander E, Black P M and Jolesz F. (1994). Video registration virtual reality for nonlinkage stereotactic surgery Stereotact. Funct. Neurosurg. 6(3): pp. 139–43.

CrumWR, Griffin L D, Hill D L and Hawkes D J. (2003). Zen and the art of medical image registration: correspondence, homology, and quality Neuroimage 20(14): pp.25–37.

Crum W R, Hartkens T and Hill D L. (2004). Non-rigid image registration: theory and practice Br. J. Radiol. Spec. 77 (S1): pp.40–53.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. (1996). Computer graphics (2nd ed. in C): principles and practice. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Arie E. Kaufman. (2000). Volume visualization: Principles and advances. International Spring School on Visualization, Bonn, 2000.

Melanie Tory, Arthur E. Kirkpatrick, M. Stella Atkins, and Torsten MÄoller. (2006). Visualization task performance with 2D, 3D, and combination displays. IEEE Trans. Visual. Comput. Graphics, 12(1): pp. 2-13.

Peters TM. (2006). Image-guidance for surgical procedures. Phys Med Biol. 51(14): pp. R505- R540.

H. Visarius, J. Gong, C. Scheer, S. Haralamb, and L. P. Nolte. (1997). Man-machine interfaces in computer assisted surgery. Computer Aided Surgery, 2(2): pp.102-107.

Ibrahim A. Salama and Steven D. Schwaitzberg. (2005). Utility of a voice-activated system in minimally invasive surgery. Journal of Laparoendoscopic and advanced surgical techniques, 15(5): pp. 443-446.

N. Ahuja and M. H. Yang. (2001). Face Detection and Gesture Recognition for Human- Computer Interaction. Kluwer, 2001.

B. Mansoux, L. Nigay, and J. Troccaz. (2005). The mini-screen: an innovative device for computer assisted surgery systems. Studies in Health Technology and Informatics, 11(1): pp.314-320.

Levy, M.L., Chen, J.C.T., Moffart, K., Corber, Z. and McComb, J.G. (1998). Stereoscopic head-mounted display incorporated into microsurgical procedures. Neurosurgery, 4(3): pp. 392-396.

Wolfgang Birkfellner et al. (2003). Computer-enhanced stereoscopic vision in a head- mounted operating binocular. Phys. Med. Biol., 4(8): pp.49-57.

Philip J. Edwards et al. (2000). Design and evaluation of a system for microscope-assisted guided interventions (MAGI). IEEE Trans. Med. Imag., 19(11): pp.1082-1093.

Michael Rosenthal et al. (2002). Augmented reality guidance for needle biopsies: An initial randomized, controlled trial in phantoms. Medical Image Analysis, 6(3): pp. 313-320.

Akram I. Omara, Manning Wang, YiFeng Fan, and Zhijian Song. (2013). "Anatomical landmarks for point-matching registration in image-guided neurosurgery", International Journal of Medical Robotics and Computer Assisted Surgery.

A. Ardeshir Goshtasby. (2005). 2-D and 3-D Image Registration for Medical, Remote Sensing, and Industrial Applications. Wiley, 2005.

Joseph. V. Hajnal, Derek L. G. Hill, and David J. Hawkes, editors. (2001). Medical Image Registration. CRC Press, 2001.

Derek L. G. Hill, Philipp G. Batchelor, Mark Holden, and David J. Hawkes. (2001). Medical image registration. Phys. Med. Biol., 46(3): pp.R1-R45.

S. Lavallee. (1996). Registration for computer-integrated surgery: Methodology, state of the art. In R. H. Taylor, S. Lavallee, G. C. Burdea, and R. MÄosges, editors, Computer-integrated surgery, Technology and clinical applications, chapter 5, pp. 77-97. MIT Press, Cambridge Ma, 1996.

J. B. Antoine Maintz and Max A. Viergever. (1998). A survey of medical image registration. Medical Image Analysis, 2(1): pp.1-37.

Barbara Zitova and Jan Flusser. (2003). Image registration methods: a survey. Image and Vision Computing, 21(11): pp.977-1000.

Alam F, Rahman SU, Khalil A, Ullah S, Khusro S. (2017). Quantitative evaluation of intrinsic registration methods for medical images. Sindh Univ Res J – SURJ (Sci Ser) 2017; 49(1): pp. 43–8.

Alam F, Rahman SU, Ullah S, Khalil A, Uddin A. (2016). A review on extrinsic registration methods for medical images. Tech J Univ Eng Technol Taxila 2016; 2(1):110–119.

Eggert DW, Lorusso A, Fisher RB: (1997). Estimation 3D rigid body transformation: a comparison of four major algorithms. Machine Vision Applic 1997; 9: pp. 272–290.

Wang Manning; Song Zhijian. (2010). Distribution Templates of the Fiducial Points in Image-Guided Neurosurgery. Neurosurgery 2010; 66(3): pp. 143-150.

Wang Manning; Song Zhijian. (2010). Guidelines for the placement of fiducial points in image-guided neurosurgery. International Journal of Medical Robotics and Computer Assisted Surgery. 2010; 6(2): pp. 142-149.

Barnett GH, Miller DW, Weisenberger J. (1999). Frameless stereotaxy with scalp applied fiducial markers for brain biopsy procedures: experience in 218 cases. J. Neurosurg. 91(5): pp. 69–76.

Ziv yaniv, Kevin cleary. (2006). Image-guided procedures: a review. CAIMR TR-2006-3.

Jay West et al. (1997). Comparison and evaluation of retrospective intermodality brain im-age registration techniques. Journal of Computer Assisted Tomography, 4(4): pp.554- 568.

Maurer C R J, Fitzpatrick J M, Wang M Y, Galloway R L J, Maciunas R J and Allen G S (1997). Registration of head volume images using implantable fiducial markers IEEE Trans. Med. Imaging 16 (4): pp. 47–62.

Fitzpatrick JM, Galloway RL. (2001). Fiducial-based 3D image- and patient space matching. Automedica, 20(1-2), pp. 36-47.

Erasmo Barros da Silva Jr, André G. Leal, Jerônimo B. Milano, Luis F. Moura da Silva Jr, Rogério S. Clemente, Ricardo Ramina. (2010). Image-guided surgical planning using anatomical landmarks in the retrosigmoid approach. Acta Neurochir; Vol. 152: pp. 905–910.

Vrionis FD, Foley KT, Robertson JH, Shea JJ III. (1997). Use of cranial surface anatomic fiducials for interactive imageguided navigation in the temporal bone: a cadaveric study. Neurosurgery 40: pp. 755–763.

Wolfsberger S, Rössler K, Regatschnig R, Ungersböck K: (2002). Anatomical landmarks for image registration in frameless stereotactic neuronavigation. Neurosurg Rev 2002; 25:68–72.

Pfisterer WK, Papadopoulos S, Drumm DA, Smith K, Preul MC. (2008). Fiducial versus nonfiducial neuronavigation registration assessment and considerations of accuracy. Neurosurgery 2008; 6(2): pp.201– 207.

Peter A. Woerdeman, Peter W. A. Willems, Herke J. Noordmans, Cornelis A. F. Tulleken, Jan Willem Berkelbach Van Der Sprenkl .(2007). Application accuracy in frameless image-guided neurosurgery: a comparison study of three patient-to-image registration methods. J Neurosurg 2007; 10(6): pp. 1012–1016.

Pelizzari C A, Chen G T Y, Spelbring D R, Weichselbaum R R and Chen C T. (1989). Accurate three-dimensional registration of PET, CT and MR images of the brain J. Comput. Assist. Tomogr. 13: pp. 20–6.

Eggers G, Mühling J, Marmulla R. (2006). Image-to-patient registration techniques in head surgery. Int J Oral Maxillofac Surg. 35(12):1081-1095.

Maurer C R J, Maciunas R J and Fitzpatrick J M. (1998). Registration of head CT images to physical space using a weighted combination of points and surfaces IEEE Trans. Med. Imaging 17: pp. 753–611.

Man Ning Wang; Zhi Jian Song. (2011). Classification and Analysis of the Errors in Neuronavigation. Neurosurgery 68(4): pp. 1131-1143.

Hofer M, Strauss G, Koulechov K, Dietz A. (2005). Definition of accuracy and precision—evaluating CAS-systems. Int Congress Series 1281, pp.548–552.

Maurer CR, Fitzpatrick JM, Wang MY. (1997). Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16(4): pp. 447–462.

West JB, Fitzpatrick JM, Toms SA. (2001). Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery 48(4): pp. 810–816.

Eric P. Sipos, Scot A. Tebo, S. James Zinreich, Donlin M. Long, and Henry Brem. (1996). In vivo accuracy testing and clinical experience with the ISG viewing wand. Neu- rosurgery, 39(1): pp.194-202.

Golfinos J and Spetzler R F. (1996). The ISG system for 3-D craniotomy A Textbook of Stereotactic and Functional Neurosurgery ed P L Gildenberg and R N Tasker (Philadelphia: McGraw-Hill).

Barnett G, Kormos D, Steiner C, Weisenberger J. (1993). Intraoperative localization using an armless, frameless stereotactic wand. Technical note. J. Neurosurg.78(5): pp. 10–14.

Horstmann GA, Reinhardt HF. (1994). Ranging accuracy test of the sonic microstereometric system. Neurosurgery 3(4): pp. 51–57.

Heinrich Becker, Felix Herth, Armin Ernst, and Yehuda Schwarz. (2005). Bronchoscopic biopsy of peripheral lung lesions under electromagnetic guidance: A pilot study. Journal of Bronchology, 12(1):9-13.

Frantz D D, Wiles A D, Leis S E and Kirsch S R. (2003). Accuracy assessment protocols for electromagnetic tracking systems Phys. Med. Biol. 48(22) pp.41–51.

P. Parikh et al. (2005). Dynamic accuracy of an implanted wireless AC electromagnetic sensor for guided radiation therapy; implications for real-time tumor position tracking. Med. Phys., 32(6): pp. 21-32.

L. Zhang et al. (2005). Accuracy and precision of implantable radiofrequency transponder localization measurements conducted using multislice CT. Med. Phys., 32(6): pp. 21-36.

Birkfellner W, Watzinger F, Wanschitz F, Ewers R and Bergmann H. (1998). Calibration of tracking systems in a surgical environment IEEE Trans. Med. Imaging 7: pp. 37–42.

Hummel J B, Bax M R, Figl M L, Kang Y, Maurer C Jr, Birkfellner W W, Bergmann H and Shahdi R. (2005). Design and application of an assessment protocol for electromagnetic tracking systems Med. Phys. 32 2371–9.

Scot A. Tebo, Donald A. Leopold, Donlin M. Long, S. James Zinreich, and David W. Kennedy. (1996). An optical 3D digitizer for frameless stereotactic surgery. IEEE Comput. Graph. Appl., 16(1): pp.55-64.

L. J. Zamorano, L. P. Nolte, A. M. Kadi, and Z. Jiang. (1994). Interactive intraoperative localization using an infrared-based system. Stereotact Funct Neurosurg, 63(1- 4): pp.84-88.

Galloway RL, Maciunas RJ, Bass WA, Carpini W. (1994). Optical localization for interactive, image-guided neurosurgery. Med. Imaging 2164: pp. 137–45.

Khadem R, Yeh CC, Sadeghi-Tehrani M, Bax MR, Johnson JA, et al. (2000). Comparative tracking error analysis of five different optical tracking systems. Comput. Aided Surg. 5: pp. 98–107.

Jay B. West and Calvin R. Maurer, Jr. (2004). Designing optically tracked instruments for image-guided surgery. IEEE Trans. Med. Imag., 23(5): pp.533-545.

Wiles A D, Thompson D G and Frantz D D. (2004). Accuracy assessment and interpretation for optical tracking systems Proc. SPIE 5367(4) pp. 21–32.

Danisch L A, EnglehartKand Trivett T. (1999). Spatially continuous six degree of freedom position and orientation sensor Proc. SPIE 3541: Fiber Optic and Laser Sensors and Applications SPIE (Bellingham, WA: The International Society for Optical Engineering) pp. 48–56

N. Pagoulatos, R.N. Rohling, W.S. Edwards, and Y. Kim. (2000). A new spatial localizer based on ¯ber optics with applications in 3D ultrasound imaging. In SPIE Medical Imaging: Image Display and Visualization, pp. 595-602.

Greg Welch and Eric Foxlin. (2002). Motion tracking: No silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl., 22(6):24-38.

Kumar N, Wild A, Webb JK, Aebi M. (2000). Hybrid computer-guided and minimally open surgery: anterior lumbar interbody fusion and translaminar screw fixation. Eur. Spine J. 9(S): pp. 71–77.

Ludwig SC, Kowalski JM, Edwards CC, Heller JG. (2000). Cervical pedicle screws: comparative accuracy of two insertion techniques. Spine 25(26): pp. 75–81.

Anthony DiGioia, Branislav Jaramaz, Frederick Picard, and Lutz Peter Nolte, editors. (2004). Computer and Robotic Assisted Hip and Knee Surgery. Oxford university press.

Lutz P. Nolte and Reinhold Ganz, editors. (1999). Computer Assisted Orthopaedic Surgery (CAOS). Hogrefe and Huber, 1999.

Leo Joskowicz, Charles Milgrom, Ariel Simkin, Lana Tockus, and Ziv Yaniv. FRA- CAS. (1998). A system for computer-aided image-guided long bone fracture surgery. Com- puter Aided Surgery, 3(6): pp. 271-288.

Sugano N (2003). Computer-assisted orthopedic surgery J. Orthop. Sci. 8 442–8.

Brown GA, Willis MC, Firoozbakhsh K, Barmada A, Tessman CL, Montgomery A. (2000). Computed tomography image-guided surgery in complex acetabular fractures. Clin. Orthop. 370(2

0: pp. 19– 26.

Ellis RE, Tso CY, Rudan JF, Harrison MM. (1999). A surgical planning and guidance system for high tibial osteotomy. Comput. Aided Surg. 4(2): pp. 64–74.

Kris Verstreken et al. (1998). An image-guided planning system for endosseous oral im-plants. IEEE Trans. Med. Imag., 17(5): pp. 842-852.

Appelbaum L, Lederman R, Agid R and Libson E. (2005). Hepatic lymphoma: an imaging approach with emphasis on image-guided needle biopsy Isr. Med. Assoc. J. 7: pp. 19–22.

Mevis (2005). Mevis Hepatic Surgery Planning. Web Site 2005 http://www.mevis.de/projects/liver/page 5.html. Accessed on: 13/12/2019.

Cash D M, Sinha T K, Chapman W C, Terawaki H, Dawant B M, Galloway R L and Miga M I. (2003). Incorporation of a laser range scanner into image-guided liver surgery: surface acquisition, registration, and tracking Med. Phys. 30 (16): pp. 71–82.

Suntharos P, Setser RM, Bradley-Skelton S, Prieto LR. (2017). Realtime three dimensional CT and MRI to guide interventions for congenital heart disease and acquired pulmonary vein stenosis. Int J Cardiovasc Imaging; pp.1–8.

Cazacu IM, Luzuriaga CAA, Saftoiu A, Vilmann P, Bhutani MS (2018). A quarter century of EUS-FNA: Progress, milestones, and future directions. Endosc Ultrasound 7(3): pp. 141-160

Lane T. (2018). A short history of robotic surgery. Ann R Coll Surg Engl 100(6): pp. 5-7.